RAMAKRISHNA MISSION VIDYAMANDIRA
(Residential Autonomous College under University of Calcutta)
SECOND YEAR
B.A./B.SC. FOURTH SEMESTER (January – June) 2013
Mid-Semester Examination, March 2013Here is 04/03/2013Date: 04/03/2013PHYSICS (Honours)
Paper : IVFull Marks : 50

Use three answer scripts, one for each group.

Answer five questions from Gr-A, Gr-B and Gr-C

4

2+4

6

6

Group – A [Thermal Physics – II]

Answer any one question.

1.a) With the help of a rough sketch, show the nature of intermolecular interaction between molecules of a real gas. On the same graph draw the model potential for ideal gas approximation.

Physically justify the ideal gas model.

b) Find out the expressions of critical constants of a van der Waal's gas. Hence derive the equation of corresponding state. 4+2

2.a) Starting from the expression of Helmholtz free energy F(T, V) show that $\left(\frac{\partial s}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$. Find out the expression of $\left(\frac{\partial U}{\partial V}\right)_T$. Show that for a van der Waal's gas $\left(\frac{\partial U}{\partial V}\right)_T = \frac{a}{V^2}$. Hence, find an expression of U for the gas.

b) Prove that $C_P - C_V = -T \left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P^2$ 4

Group – B [Physical optics and E.M. Theory]

Answer any two questions.

3.a) Explain Maxwell's equations of electromagnetic wave in free space.4b) An electromagnetic wave is characterized by

i) $E_x = A \sin\left(\omega t - kz + \frac{\pi}{3}\right)$,	$E_y = A \sin\left(\omega t - kz - \frac{\pi}{6}\right)$
ii) $E_x = A Sin (\omega t - kz),$	$E_y = B \sin\left(\omega t - kz + \frac{\pi}{3}\right)$
iii) $E_x = A Sin (\omega t - kz),$	$E_y = A Sin (\omega t - kz + \emptyset),$

where ϕ is a random function of time. Determine the state of polarization of the wave in each case.

4. a) Explain the action of a Nicol Prism as a polarizer and an analyzer.4b) Explain how a quarter wave plate can be used to distinguish between a circularly polarized

and an unpolarized light wave.

5.a) Derive an expression for the intensity distribution at a point due to interference of two coherent		
monochromatic light beams of same wave length in Young's double slit experiment.	5	
b) Obtain the conditions of maxima and minima in the interference pattern.	2	
c) Light (wave length 632.8 nm) falls on two narrow slits with separation 0.2 mm.		
A fringe pattern appears on the screen placed 100 cm away.		
i) How far (in radian and mm) above and below the central axis are the first zeros of the interval 2^{-1} .		
intensity ? ii) How far (in mm) from the axis is the 5^{th} bright band ?	3	
Group – C [Alt. Currents and Electronics –I]		
Answer one question from Q6, Q7 and another question from Q8, Q9.		
6.a) A dc <i>emf</i> is suddenly applied to a circuit consisting of a resistance, inductance and a capacit series . Investigate the growth of charge in the circuit. When the growth is oscillatory, obtain an expression for the frequency of oscillation of the charge.		
b) If $L = 10H$ and $R = 500$ ohm in LR circuit, find the time required by current to attain 50% of its maximum value. What will happen if the switch in the circuit also has a small resistance of 10 ohm. 2		
7. a) Explain how you can represent alternating current or voltage using complex number. What diagram.	is phasor 3+1	
b) Obtain an expression for the power factor of a circuit. Explain the term "watt less circuit".		
What do you mean by bypass capacitor and blocking capacitor.	4+1+1	
8.a) Explain with the circuit diagram the operation of a bridge rectifier. Find its dc and rms value of		
output voltage.	2+3	
b) A sinusoidal voltage of 230V is applied to a half wave rectifier consisting of a diode of resistance		
$200 \ \Omega$ and a load of 1 K Ω . Calculate dc output power and rectification efficiency.	4	
c) Why a consideration of PIV is important for a source to be rectified ?	1	
9.a) Define ripple factor.		
How does a capacitor input filter smooth out ripple at the rectifier output ?	1+2	
b) Draw the circuit diagram of a simple regulator. Design a Zener regulator to give an output of 12V over a load current 10 mA to 20 mA variation. Calculate also the power rating of Zener. Given supply voltage = $20V$ and knee current = 4 mA. 1+3		
a) Discuss the breakdown machanisms of a semiconductor diada	2	
a) Lingques the breekdown mechanisms of a semiconductor diade	1	

c) Discuss the breakdown mechanisms of a semiconductor diode. 3